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Abstract  The collective behavior of microbial cells in a batch culture is the result of interactions among 
individuals and effects of the surrounding medium, which changes during the growth progress. A semi empirical 
model skips biological and physiological peculiarities of the microorganisms and focuses on the observed sigmoid 
shape of the growth curve that is a common feature of batch cultures of pro- and eukaryotic microorganisms. The 
model replaces the observed growth trend with the behavior of an ideal batch culture that undergoes an unperturbed 
duplication process. It leads one to recognize that: • the origin of the time scale for the microbes, θ, differs from that 
of the observer, t; • the absolute reference state for any batch culture is log (N) = 0 (no matter the log base) for θ = 0; 
• the cell duplication occurs after an active latency gap, θ0, that decreases with increasing inoculum population, 
log2(N0) and increasing temperature; • θ0 substantially differs from the lag phase, λ, considered by most authors;  
• the use of reduced variables allows gathering different growth curves in a single master plot; • the model applies to 
batch cultures which undergo change of the environmental conditions and predicts the width of the intermediate 
latency gap just after the change; • the expression for the decay trend of the microbial population allows definition of 
a parameter suitable to rank the effects of bactericidal drugs. The model justifies the demand of more restricted 
safety limits of microbial loads. 
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1. Introduction 

Predictive microbiology provides suggestion for a safe 
shelf life of many food products that can undergo 
microbial spoilage in various conditions of temperature, 
water activity, pressure, etc. Predictions mainly deal with 
the expected extent of the microbial growth that should 
remain below a safety threshold.  

The early phases of the growth, including the duration 
of the pre-growth latency period, are therefore of major 
interest and have so far been the subject of many 
investigations [1-7]. All these authors proposed growth 
models that can account for the so-called growth curve, 
log(N/N0)-vs-t [9], namely, the increasing trend of the 
microbial population density, N, from a starting level, N0. 
These models underwent adjustments by addition of 
fitting parameters [10,11,12]. The aim was to connect the 
macroscopic growth data, namely, plate counts or OD 
records, with the metabolic and physiologic subtleties, 
discovered thanks to the progress of cellular biochemistry 
and/or results from microbial cultures in chemostatic 
conditions [13]. As for the early phase of the growth, 
further improvements came from the search of the  
 

single-cell lag time and the construction of the onset tail of 
the growth curve as the result of a double gamma 
distribution of lag times, one for the single cell and the 
other for the growing population [11,12]. 

Consequently, new parameters and coefficients had to 
enter the fitting treatment, which therefore required 
adequately large sets of good quality experimental data. 

A completely different approach sees the collective 
behavior of the cells as the result of simple interactions 
among individuals, like that of starling flocks or fish 
classes investigated by the group of Giorgio Parisi (2021 
Nobel laureate for Physics) [14,15]. Overcoming the 
amazing number of variables of a priori unknown 
relevance, one should view “microbial communities as 
dynamical systems and apply mathematical models to 
characterize community structure and dynamics, to 
predict responses to perturbations and to explore general 
dynamical properties such as stability, alternative stable 
states and periodicity” [16]. 

The available information tells us that:  
•  the increase of N is the neat resultant of birth of 

new cells and death of others;  
•  no synchronism appears between single cells, and  
•  the medium (available substrate, production of 

catabolites, etc.) changes with the growth progress.  
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Nonetheless, the experimental evidence of the count of 
viable cells, N, or the mass of living material, m, produces 
a “growth curve” that shows a sigmoid rising trend of N 
for any batch culture of pro- and eukaryotic 
microorganisms [17]. This suggests that, in line with 
Parisi’s proposal, one must envisage a simple model that 
skips the individual peculiarities and reproduces the 
observed overall trend. The model should refer to a 
property that prevails on the specific differences between 
microbial species and describe it with a suitable 
mathematical expression. A semi empirical model by the 
present author [18-23] (briefly summarized below) seems 
in line with such expectations.  

The main scope of the present paper is to show that this 
model is of interest for Predictive Microbiology 
investigations. It identifies the latency gap preceding the 
start of the cell duplication process in an alternative way 
with respect to the traditional [7] lag phase, λ, and 
suggests a time scale of the batch culture that differs from 
the time scale of the experimenter. This is a key issue to 
predict a correlation between the width of the latency gap 
and starting population density and the forthcoming 
specific duplication rate. The model applies also to the 
intermediate latency gap observed on abruptly changing 
the environment (temperature, water activity, pH, etc.) of 
the culture. Finally, the extension of the model to the 
decay of the cell population allows definition of a 
parameter suitable to rank the effects of bactericidal drugs. 

2. The Model 

The model comes from the unquestionable assumption 
that cell growth of prokaryotic microbes occurs via duplication 
of single cells, starting from the initial level N0, namely, 

 /
0 2tN N τ=  (1) 

where (1/τ) is the duplication rate and t is the elapsed time.  
The proposed approach replaces reality with a virtual 

situation: an ideal batch culture mimics the observed 
growth trend through an unperturbed duplication process. 
The ideal culture hosts synchronic generation lines from 
the N0 cells of the inoculum, which have the same age. No 
cell dies during the progress of the growth. To reproduce 
the observed sigmoid trend, τ varies during the growth 
process, namely τ = τ(t). The function τ(t) replaces the 
discontinuous succession of generation steps and 
implicitly accounts. for the collective effects of many 
different contributions, like crowding of the cell 
population, quorum sensing, presence of adverse 
metabolic catabolites, etc., which come into play during 
and because of the growth progress of real batch cultures. 
τ(t) has to comply with the constraints that the duplication 
rate, 1/τ , must be null for t → 0 and t → ∞. It was proven 
[23] that a simple and suitable expression for τ(t) is: 

 ( ) tt
t
ατ

β
= +  (2) 

where the parameters α and β  are defined through the 
best fit of the experimental data (plate counts or OD 

records) of the real batch culture. This makes the model 
semi empirical and suitable to account for the interactions 
between cells and for changes of the medium during the 
growth progress. 

A continuous function can therefore describe the 
growing trend of the microbial population 
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where N stands for either population density (CFU/volume 
unit) or overall number of viable cells (CFU). 

The parameters α and β  have a physical meaning: β is 
the number of duplication steps undergone along each 
generation line (with Nmax = N0 2β), while the ratio (β/α) 
reflects the maximum value, µe, of the specific duplication 

rate, 
( )d log

/
d
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=  (with the Newton notation for 

time derivatives). 
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is the corresponding expression for the straight-line 
tangent to the growth curve, log2(N/N0) -vs -t, at the 
inflection point, 

 *
3

t t αβ
= =  (5) 

which crosses the t-axis at t = t(0) = t*/3 and reaches the 
value Nmax = N0 2β at t = tend = 3t*. The reader can find in 
[23] the algebraic details and the suggested the best fit 
routine for the experimental data, which must be 
significantly (in the statistical sense) above the log2(N0) 
level. Almost identical expressions hold for eukaryotic 
microorganisms that grow with different mechanisms:  
one has simply to replace N with an analog quantity,  
like the living biomass, m, and use an adequate base  
of the logarithm (e.g., 10 or e) to treat the experimental 
data.  

All the above equations concern just the cell duplication, 
with no account for any preceding phase, where no cell 
duplication takes place. Consequently, the start of the cell 
duplication process does not coincide with the time origin 
for the experimenter. The corresponding time gap, t0, is to 
subtract from the time elapsed since the actual start of the 
experiment. Figure 1 shows the main peculiarities of such 
ideal growth curve.  

Figure 1 clearly shows that the traditional sigmoid 
shape of the growth curve actually concerns the increase 
of the cell population, determined from the plate count or 
OD data. It may not include any preliminary non-
proliferative process. Its upward onset simply reflects 
longer duplication times. The true pre-growth phase 
occurs during the t0 time span that precedes the growth 
onset. This is a main difference with respect to the lag-
phase so far described by other authors [7]. 
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Figure 1. Sketch of the ideal growth curve according to the proposed model. The latency gap of the present model substantially differs from the lag 
phase, λ, considered in preexisting models [7] 

The introduction of reduced variables, ξ = log2(N/N0)/β 
and tR = (t-t0)/(t*-t0), allows one to gather in a single 
master plot (Figure 2) the growth curves of any 
duplicating microbial strain, no matter the experimental 
conditions [18,19,20]. The corresponding equation holds 
for pro- and eukaryotic microorganisms [18]. 
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The data reported in Figure 2 come from the quoted 
literature: treated according to the present model, each 
data set provided the relevant t*, t0, α and β. These 
parameters allowed the evaluation of the related reduced 
variables and the insertion in the (ξ, tR) plot.  

Now one can define the shift between the time origin of 
the scale of the experimenter, t, and the time scale of the 
batch culture, θ. Using the Eq.4 adjusted taking into 
account the t0 shift and Eq.s 3 and 5, one gets 
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The natural origin of time scale of the experimenter,  
t = 0, coincides with the beginning of the experiment. It is 
soon evident that eq.7 implies an unlikely negative value 

of log2(N/N0) for t = 0. Looking at such incongruence with 
the eyes of the microbial culture, an ideal start condition, 
θ = 0, suitable for any batch culture (and any log scale), is 
log (N) = 0 (namely, N = 1 CFU (or 1 CFU/unit volume, 
or 1 CFU/unit mass). The corresponding value in the scale 
of the experimenter is tstart (Figure 3), which is a virtual 
value with no effect on the fitting treatment and related 
conclusions (even when tstart < 0). This choice leads to 
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No matter the origin of the time scales, (t-t0) = (θ -θ0), 
(t*- t0) = (θ∗-θ0) and θ0 = (t0 –tstart). For t0 > t > tstart (or 
within the θ0 interval in the time scale of the culture), the 
culture would undergo the preliminary metabolic and 
physiological steps that prepare the cell duplication. One 
may dub this time gap “active latency gap”, which 
substantially differs from the so-called lag phase, λ, of the 
other models, which simply corresponds the onset tail of 
the sigmoid trend of the growth curve [7]. For the present 
model, this tail is a consequence of the variable duplication 
time, τ(t), and deals with a duplication progress that is 
slower in its earlier steps (e.g., cells prefer to grow in size 
[24] enriching in ribosomes [25] rather than in number).  

 
Figure 2. Gathered growth curves from a variety of microbes (Lactobacillus delbrueckii subsp. bulgaricus, Streptococcus thermophilus, Salmonellae, C. 
jejuni, Pseudomonas fluorescens and Candida sake) adjusted from [18]. For further data, see also Figure 2 in [21] 
 



38 Journal of Applied & Environmental Microbiology  

 
Figure 3. The origin of the time scale of the microbial culture, θ, differs from that of the experimenter, t. The dashed line that allows calculation of θ0 
corresponds to the level –β/8. For 0 < θ < θ0, the microbial culture experiences activities related to the incoming duplication (active latency gap). Plate 
count data come from a batch culture of Pseudomonas aeruginosa at 5°C [26]. Calculated values: tstart = -20 h; t0 = 12 h; θ0 = 32 h 

For θ < 0 (no matter the corresponding value of t), the 
activity of the culture would not directly concern the 
preparation of the forthcoming duplication process [23]. 
This holds also if tstart < 0 in the time scale of the 
experimenter: the negative value of tstart would simply 
suggest that the used inoculum was already in the active 
latency gap at the beginning of the experiment (t = 0). 
Figure 3 reports an example. 

3. Predictive Consequences 

This choice (N = 1 for θ = 0) leads to relationships of 
some interest for predictive microbiology studies. With 
reference to Eq. 8 and putting the condition θ = 0 and  
N = 1, one obtains 

 ( )2 0 0log μ / 8N θ β= +  (9) 

From the α and β values (obtained from the best fit of 
experimental data), one can calculate the relevant µ 
through Eq.3 and θ0 from Eq.9 for any value of N0. Some 
authors [15,26] suggest that, at given temperature, water 
activity, pH, etc., µ is an intrinsic property of the system, 
namely, cells and surrounding medium, and reflects the 
condition that allows all the underlying metabolic and 
physiologic steps to occur at the same pace - the so-called 
“balanced growth”-, no matter the starting level of the 
batch culture, N0. According to this vision, for a given 
microbial culture at a given T, µ is a constant. One 
therefore may align the observed growth trends starting 
from different N0 levels along a single straight line tangent 
to all the trends at the respective θ* and going through the 
same origin [θ = 0, log2(N) = 0] [22,23]. Figure 4 shows a 
sketched picture that shows how the active latency gap 
increases with increasing N0, while the traditional lag 
phase, λ, shows an opposite behavior. 

 
Figure 4. Growth curves from different N0 inoculums, at the same temperature, aligned along the same straight line that corresponds to the same 
maximum specific duplication rate, µ. 
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This can be of interest for predictive studies, allowing 
an immediate and direct comparison of growth trends 
starting from different N0 inoculums. An advantage of 
using the θ scale, is that one can easily recognize (see 
Figure 3) that 
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Equations 10 and 11 can be of help to perfect the fitting 
treatment of the experimental data, improving the 
reliability of calculated values of µ and θ(0). 

Furthermore, Eq.9 indicates a straight line correlation 
between θ0 and log2(N0), at a given temperature. Since  
β = log2(Nmax) - log2(N0), such correlation implies that  
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This means that the width of the active latency gap of 
low N0 inoculums tends to vanish. The above relationships 
also lead to 

 ( ) ( )0 2 max
0

lim log /N
β

θ µ
→

=  (13) 

This means that when the cell population of the starting 
inoculum is not far from the maximal capacity of the 
system, Nmax, the active latency gap tends to a maximum 
width.  

Experimental evidence generally confirms the expectation 
that µ increases with increasing T (below pasteurizing 
thresholds). Since log2(Nmax) too changes, but to a much 
smaller extent than µ (see below), Eq. 11 states that θ0, as 
well its upper limit, log2(Nmax)/µ, has to decrease with 
increasing T (Figure 5). 

 
Figure 5. The width of the active latency gap, θ0, vanishes for log2(N0) = log2(Nmax)/9. At a given T, θ0 increases on increasing log2(N0), but decreases 
on increasing T. Its upper limit, log2(Nmax)/µ, decreases on increasing T 

For a given N0, the change of µ with T still implies that the corresponding straight-line tangent to the growth curve  
at θ* must go through the origin of the time scale of the microbial culture (θ = 0, log(N) = 0), as shown in Figure 6. This 
allows a direct comparison of growth curves recorded at various temperatures and prediction of the effect of temperature 
on the duplication rate in a way that is much more reliable than the abused (too narrow temperature range) Arrhenius 
expression. 

 
Figure 6. The maximum specific duplication rate increases with increasing temperature, while no significant changes concern the maximum population 
density, Nmax. Such a behavior occurs for the batch cultures of psychrotrophic bacteria [21]. 
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At fixed N0, the trends of µ and θ0 with increasing 
temperature do not counterbalance each other [21]. This 
means that the product (µθ0) can increase or decrease on 
increasing T. Since β = log2(Nmax) - log2(N0), one can 
rewrite Eq.9, 

 ( ) ( )0 2 0 2 max9log log / 8N Nµθ  = −   (14) 

This implies that log2(Nmax) and the product (µθ0) have 
opposite trend with increasing T and that the variation of 
log2(Nmax) is smaller than that of µ (see above). 

When log2(Nmax) does not change too much (within the 
experimental error; see, for example, [21,28]), α is the 
parameter most affected by the variation of T [22]. 

In a predictive perspective, the main conclusion to draw 
is that small microbial loads can quickly grow up to 
noxious levels, because of their very short latency gap, 
especially if the environment temperature rises above a 
given safe threshold. Since the above relationships  
hold for either pro- or eukaryotic microorganisms (as 
previously mentioned), it seems advisable to review  
the safety limits of the microbial loads for many 
microorganisms, on the base of evaluations through the 
present model. 

4. Predicted Response to Environment 
Changes 

The model of the ideal batch culture implies only 
changes of the culture medium related to the growth 
progress and implicitly accounted for by the function τ(t), 
because of the empirical origin of α and β.  

Changes of temperature, pH, water activity, or 
concentration of some critical substrate, intentionally 
induced by the experimenter or related to an external 
perturbation, modify the growth trend [25]. Applying the 

same model to the trends observed before and after an 
environment change, the description of the overall 
behavior of the batch culture implies a discontinuity 
between two “standard” duplication processes, relevant to 
environment 1 and environment 2, respectively. Such 
discontinuity corresponds to an intermediate latency gap 
[27,28]. Assuming that the straight line with slope µ 
reflects a peculiar balance between cell population and 
surrounding environment [25], the abrupt change of the 
latter (change of temperature, pH, water activity, or ionic 
strength, extra microbial strains, etc.) should imply an 
instantaneous change of µ. If the change occurs at θchange, 
this instant becomes the new origin of the time scale for 
the microbial culture. Figure 7 reports the sketched picture 
of an abrupt change of temperature: increase, T1 → T2, or 
decrease, T1 → T3, and related intermediate latency gaps. 

It is worth noticing that the width of the intermediate 
latency gap depends both on the difference between  
µ values of the two environments and on the value of 
log2(Nchange). However, quenching the culture to lower 
temperature implies a wider intermediate latency gap than 
heating to higher T. This conclusion is in partial 
agreement with some experimental evidence [29].  
Such a behavior may have several biological and 
physiological reasons: the simplest one is the change of 
the rate of biochemical reactions underlying cell 
duplication [30,31], but one may not exclude the 
unbalanced crowding/mechanical interaction perceived by 
the cells [32]. Similar considerations hold for environment 
changes dealing with other physical, chemical and 
biological variables, like water activity, pH, medium 
solvent, extra microbial contamination, etc. [33,34,35], as 
far as they imply a change of µ. The quasi-chemical model 
by Ross and his coworkers [34,35] leads to similar 
conclusions, at the price of a priori assumptions and many 
adjustable parameters, and does not distinguish the time 
scale of the culture, θ, from that of the experimenter, t. 

 
Figure 7. The change of the temperature from T1 to T2 or T3 (T2 > T1 > T3) modifies the growth trend. θchange, is the new origin of the time scale for the 
culture and the corresponding level of the cell population is the new log2(N0). (θ0,2 – θchange) and (θ0,3 – θchange) are the intermediate latency gaps for the 
T1 → T2 and T1 → T3 temperature changes 
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When the environment 2 is strongly adverse to the 
growth progress and implies the death of the cells, as for 
the inoculation of a bactericidal drug, one should observe 
the decline of the microbial population. The growth trend 
first relent because of the death of the old (weakest) cells, 
but, once the younger generations are involved, the decay 
of the population density takes place with a cascade  
trend very similar to the “natural” decay so far described 
and tested for aged unperturbed batch cultures of  
non-sporulating and non-phenotypically adapting bacteria 
[20,23], 

 
2

expchangeN N
d

θ 
= −  

 
 (12) 

where θ = (t - tinoculation). An experimental evidence concerns, 
for example, the inoculation of a 20 γ (γ = 1 µg mL-1) dose 
of doxorubicin in a batch culture of Lactobacillus 
helveticus [(Figure 12 in 23]). The parameter d accounts 
for the effect of the drug: a large d corresponds to a weak 
and delayed bactericidal action. One can therefore use the 
value of d to compare the efficacy of different drugs  
and related doses. With respect to other mathematical 
description of the population decay [34,35] the present 
model uses a single parameter, without compromising the 
fitting reliability [23]. 

5. Conclusion 

A semi-empirical model describes the collective 
behavior of cells and medium in a batch culture and 
allows one to recognize that:  

•  the origin of the time scale for the microbes, θ, 
differs from that of the observer, t;  

•  the absolute reference state for any batch culture is 
log (N) = 0 (no matter the log base) for θ = 0; 

•  the cell duplication occurs after an active latency 
gap, θ0, which decreases with increasing inoculum 
population, log2(N0), and increasing temperature; 

•  θ0 substantially differs from the lag phase, λ, 
considered by most authors; 

•  the use of reduced variables allows gathering 
different growth curves in a single master plot; 

•  the model applies also to batch cultures perturbed 
by environment changes; 

•  the expression for the decay trend of the microbial 
population allows definition of a parameter suitable 
to rank the effects of bactericidal drugs. 

The model applies to both pro- and eukaryotic 
microorganisms and suggests a restriction of the  
safety limits of the allowed microbial load for many 
microorganisms.  
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